Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Lead zinc borate, $PbZn_2(BO_3)_2$

Xue-An Chen,* Ying-Hua Zhao, Xin-An Chang, Li Zhang and Hai-Ping Xue

College of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022, People's Republic of China Correspondence e-mail: xueanchen@bjut.edu.cn

Received 16 November 2005 Accepted 6 December 2005 Online 24 December 2005

 $PbZn_2(BO_3)$ ₂ crystallizes in the space group *Pccn*, with the Pb cation at a site with imposed twofold symmetry. The compound represents a new structure type in which $ZnBO₃$ layers are bridged by Pb^{2+} cations, giving rise to a threedimensional framework. Channels parallel to the [010] direction accommodate the stereochemically active lone pairs of the Pb^{2+} cations.

Comment

Borates have attracted much attention because they have important practical applications in second harmonic generation (SHG). For example, β -BaB₂O₄, LiB₃O₅ and YCa₄- $(BO_3)_3O$ are all well known non-linear optical (NLO) crystals (Becker, 1998). So far, many investigations have been carried out on the alkali and alkali-earth metal borates, while borates incorporating other main group elements together with transition metal elements are relatively less explored. The title compound, $PbZn_2(BO_3)_2$, was previously reported by Petzold (1966), who presented its powder X-ray diffraction pattern. However, its crystal structure remains as yet undetermined. In the course of our investigation of novel borate NLO materials, we have unexpectedly obtained single crystals of $PbZn₂$ - $(BO₃)₂$. Our X-ray structural analysis has established that $PbZn_2(BO_3)$ ₂ crystallizes in a new unique structure type (Pearson symbol $oP44$), not observed for any of the known borates. We report here its crystal structure.

 $PbZn_2(BO_3)_2$ is characterized by a complex three-dimensional network consisting of Pb^{2+} cations, tetrahedral Zn^{2+} centers and BO_3^3 ⁻ anions. We have chosen a description emphasizing the substructures to help visualize the crystal structure. In this sense, the structure can be considered as being built upon two-dimensional sheets in the following way (Fig. 1). Within the (100) plane, the fundamental building units of BO_3 triangles and ZnO_4 tetrahedra are linked together by sharing common vertices to generate a two-dimensional $ZnBO₃$ layer. Applying the c-glide symmetry operation to this layer produces the neighboring equivalent layers along the [100] direction. These layers are further bridged by the Pb^{2+} ions, resulting in the formation of the final three-dimensional framework. This framework contains V-shaped open channels running parallel to the [010] direction that are filled by the Pb^{2+} 6s² lone pairs.

All atoms occupy general positions, except Pb, which lies on a twofold axis, giving two sets of short bond lengths $[Pb-O2 =$ 2.273 (5) Å and Pb $-O1 = 2.515$ (5) Å; Table 1]. The Pb atom is also weakly bonded to four more O atoms at distances of 3.301 (6) -3.652 (8) A. Bond-valence-sum (BVS) calculations (Brown & Altermatt, 1985) produced a value of 1.97 for the four shorter $Pb - O$ bonds, which indicates that the longer distances need not be included in the coordination environment of Pb. All the short $Pb - O$ distances fall within the same hemisphere around the Pb atom, leaving room for the $6s^2$ lone pair of Pb^{2+} in the opposite direction (Fig. 2). A similar highly distorted Pb^{2+} coordination geometry has also been observed in $Pb_6B_{10}O_{21}$, with four short Pb–O distances of 2.30 (2)– 2.48 (2) A (Krogh-Moe & Wold-Hansen, 1973). In contrast, the ZnO_4 and BO_3 groups in the title compound are only slightly distorted. The $B-O$ distances lie within a narrow range of 1.371 (9)-1.384 (10) Å, with an average of 1.376 Å, which is consistent with the value reported in $Li₃In(BO₃)₂$ [1.371 (1) Å; Penin et al., 2001]. The Zn-O distances of

The crystal structure of $PbZn_2(BO_3)_2$ projected along the [010] direction, where black circles, doubly shaded circles, singly shaded circles and open circles represent Pb, Zn, B and O atoms, respectively. The Pb $-$ O contacts $[2.273 (5)$ and $2.515 (5)$ Å are drawn with thin solid lines.

The local coordination geometries of Pb, Zn and B in $PbZn_2(BO_3)$, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, z; (ii) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $-x + 1$, $-y + 1$, $-z + 1$; (iv) $x, y + 1, z$; (v) $-x + \frac{3}{2}, -y + \frac{3}{2}, z$.]

1.941 (5)–1.958 (5) \AA (average 1.950 \AA) are also very reasonable when compared with the range 1.926 (6)–1.977 (6) \AA [average 1.95 (2) \AA] in BaZn₂(BO₃)₂ and 1.95 (3)–2.03 (4) \AA [average 1.98 (3) Å] in $Ba₂Zn(BO₃)₂$, all featuring tetrahedrally coordinated Zn^{2+} (Smith & Keszler, 1992; Smith & Koliha, 1994). Bond valence analysis gave values of 2.06 for Zn and 2.96 for B, in good agreement with their expected formal valences.

Both $Zn_3(BO_3)$ (Chen *et al.*, 2005) and $BaZn_2(BO_3)$ (Smith & Keszler, 1992) are closely related to $PbZn_2(BO_3)_2$ in stoichiometry but differ in structure. In $\text{Zn}_3(\text{BO}_3)_2$, the BO₃ triangles share common vertices with irregular $ZnO₄$ tetrahedra to form a three-dimensional framework. The framework contains small unoccupied six-edge and four-edge channels running along the b axis. The structure of $BaZn_2(BO_3)$ also consists of a three-dimensional framework of corner-sharing $ZnO₄$ tetrahedra and $BO₃$ triangles. However, the channels within this framework host seven-coordinate Ba^{2+} cations. It is the variation in the coordination environments around the metal cations that is mainly responsible for the structural differences between $Zn_3(BO_3)_2$, $BaZn_2(BO_3)_2$ and $PbZn_2$ - $(BO_3)_2.$

It is clear from Fig. 1 that two rows of Pb^{2+} cations have their stereochemically active non-bonded electron pairs pointing in the opposite direction, which yields a structure without polarity. To confirm this, SHG measurements were performed on crushed crystals of $PbZn_2(BO_3)_2$ using a modified Kurtz NLO system with a 1064 nm light source (Kurtz & Perry, 1968). No second-harmonic signal at 532 nm was observed, which further supports the description of this new structure type in the centrosymmetric *Pccn* space group.

Experimental

A powder mixture of PbO (4.520 g, 20.250 mmol), ZnO (1.099 g, 13.500 mmol), Bi_2O_3 (3.146 g, 6.751 mmol) and H_3BO_3 (2.504 g, 40.500 mmol) was transferred to a Pt crucible. The sample was melted at 1023 K for one day, cooled to 823 K at a rate of 2 K h^{-1} , and then cooled to room temperature at a rate of 20 K h^{-1} . Colourless plateshaped crystals of PbZn₂(BO₃)₂ with dimensions of up to $0.6 \times 0.6 \times$ 1.0 mm were recovered. They were isolated mechanically from the reaction product for further characterization by single-crystal X-ray diffraction. The X-ray powder diffraction pattern of the ground crystals is in good agreement with that calculated from the singlecrystal data. The IR spectrum of $PbZn_2(BO_3)$ exhibits three sets of bands characteristic of the planar triangular $BO₃$ group. They are the out-of-plane bending modes ($v2$) occurring at 761.8 and 719.3 cm⁻¹, the antisymmetric stretch (ν 3) at 1223.6 cm⁻¹, and the in-plane mode (ν 4) at 625.5 cm⁻¹. These values correspond well to those reported in the literature (Thompson et al., 1991).

Crystal data

Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 20.2 - 22.5^{\circ}$ $\mu = 36.61$ mm⁻¹ $T = 290 \text{ K}$ Plate, colorless $0.1 \times 0.06 \times 0.02$ mm

Data collection

Table 1

Selected geometric parameters (\mathring{A}, \degree) .

Symmetry codes: (i) $-x + \frac{3}{2}$, $-y + \frac{1}{2}$, z; (ii) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) $-x + 1$, $-y + 1$, $-z + 1$; (iv) $x, y + 1, z$.

The highest residual electronic-density peaks were located 1.54 \AA from the Pb atoms.

Data collection, cell refinement and data reduction: $Rigaku/AFC$ Diffractometer Control Software (Rigaku, 1994); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by 'The Talent Training Funds of Beijing' through grant No. 20051D0501501.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1089). Services for accessing these data are described at the back of the journal.

References

- Becker, P. (1998). Adv. Mater. 10, 979-992.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Chen, D.-G., Cheng, W.-D., Wu, D.-S., Zhang, H., Zhang, Y.-C., Gong, Y.-J. & Kan, Z.-G. (2005). Solid State Sci. 7, 179-188.
- Dowty, E. (1999). ATOMS. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.
- Krogh-Moe, J. & Wold-Hansen, P. S. (1973). Acta Cryst. B29, 2242-2246.
- Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3805.
- Penin, N., Touboul, M. & Nowogrocki, G. (2001). Solid State Sci. 3, 461-468. Petzold, J. (1966). Glastech. Ber. 39, 130-136.
- Rigaku (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Smith, R. W. & Koliha, L. J. (1994). Mater. Res. Bull. 29, 1203-1210.

Smith, R. W. & Keszler, D. A. (1992). J. Solid State Chem. 100, 325-330.

Thompson, P. D., Huang, J.-F., Smith, R. W. & Keszler, D. A. (1991). J. Solid State Chem. 95, 126-135.